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We show that truncated rotating square waveguide arrays
support new types of localized modes that exist even in
the linear case, in complete contrast to localized excitations
in nonrotating arrays requiring nonlinearity for their exist-
ence and forming above the energy flow threshold. These
new modes appear either around an array center, since
the rotation leads to the emergence of the effective attractive
potential with a minimum at the rotation axis, or in the
array corners, in which case localization occurs due to
competition between the centrifugal force and total internal
reflection at the interface of the truncated array. The degree
of localization of the central and corner modes mediated by
the rotation increases with the rotation frequency. The stable
rotating soliton families bifurcating from linear modes are
analyzed in both focusing and defocusing media. © 2016
Optical Society of America

OCIS codes: (190.0190) Nonlinear optics; (190.6135) Spatial

solitons.

http://dx.doi.org/10.1364/OL.41.004106

The generation of localized long-range excitations in the depth
or at the surface of linear and nonlinear periodic materials is a
problem of continuously renewed interest in photonics, since
such states inherit unusual dispersion properties of Bloch ei-
genmodes and may be used for various practical applications,
including waveform and diffraction control, sensing, and surface
characterization, to name just a few [1,2]. Especially interesting
in this respect are surface states, whose properties depend not
only on the microstructure of periodic material, but are deter-
mined also by the medium placed in contact with it.

Many different types of surface waves at the interfaces of
periodic materials have been reported to the date. They include
linear waves at the interfaces of photonic crystals with a high
refractive index contrast, forming at particular optical frequen-
cies and having propagation constants in the forbidden gaps
[3–5] by an analogy with the electronic Tamm or Shockley
states [6,7]. Linear surface waves may form at the interfaces

of specially designed shallow optical lattices [8,9], where optical
analogs of electronic Shockley states were encountered [10].
Such modes appear also at the interfaces of materials with
different topologies, including interfaces between uniform
medium and truncated honeycomb lattices [11,12], where
longitudinal modulations of the structure may lead to topologi-
cal protection of surface states. Longitudinal bending of the
array may lead to linear near-surface dynamic localization [13].

Surface waves at the interface of periodic structures may ex-
ist due to nonlinearity of the material, as observed in [14,15]. If
the mean refractive index in the uniform medium and in the
lattice is different, surface waves usually appear above a certain
energy flow threshold, a characteristic feature that was discov-
ered in seminal papers on surface waves at uniform interfaces
[16,17] (see also reviews [18–20]). A variety of nonlinear sur-
face states observed experimentally include gap [21–24] and
different two-dimensional [25–27] surface solitons. The impact
of surface geometry on such waves was analyzed in [28,29].

A different approach to the formation of surface waves was
suggested in [30], where it was shown that rotation allows local-
izing light at the interfaces of radially symmetric lattices even in
the linear regime. This mechanism of surface wave formation,
which is qualitatively different from previously discussed mech-
anisms, relies on competition between centrifugal energy trans-
fer and total internal reflection at the array interface. The
existence of rotating surface modes was confirmed experimen-
tally in circularly symmetric optical cavities [31].

The aim of this Letter is to show that this mechanism can
support linear corner (and central) modes in more complex
structures—rotating square waveguide arrays—featuring dis-
crete (not continuous) rotation symmetry. We start with a dis-
cussion of linear modes supported by the rotating array, and
then switch to solitons bifurcating from them. We stress that,
previously, light localization was studied only near the center of
the rotating periodic arrays [32–35]. To the best of our knowl-
edge, rotating linear and nonlinear modes were never obtained
explicitly as entities remaining invariable in the coordinate
frame co-rotating with the array.

We consider the propagation of light beams along the ξ axis
in a medium with cubic nonlinearity, and the evolution of the
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dimensionless field amplitude q is governed by the nonlinear
Schrödinger equation:
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where the longitudinal ξ and transverse η, ζ coordinates are
normalized to the diffraction length and the input beam
width, respectively; σ � �1 corresponds to the focusing/
defocusing nonlinearity (σ � 0 in the linear medium); and
the array R�η; ζ; ξ� is built from super-Gaussian waveguides
p expf−��η − ηk�2 � �ζ − ζm�2�2∕w4g arranged into a square
structure with separation d between neighboring sites, where
p is the array depth proportional to real refractive index variation.
The array rotates as a whole around the origin at �η; ζ� � 0with
angular frequency α, i.e., the waveguide center positions �ηk; ζm�
are the harmonic functions of the distance ξ.We assume that the
array is truncated and consists of 19 × 19 waveguides. Further,
we set the period of the array to d � 2, the waveguide widths to
w � 0.5, and the array depth to p � 8. The waveguide width
and depth are selected so that the waveguides are single-mode.
Experimentally, such rotating waveguide arrays may be written
in glass by focused femtosecond laser pulses [11]. Twistedmulti-
core optical fibers may serve as additional candidates for exper-
imental observation of states reported here [2]. The array
considered here features C4v discrete rotation symmetry; how-
ever, similar results are anticipated in the truncated arrays with
other symmetry types, including honeycomb ones.

We are interested in the stationary modes that rotate
together with the array. To find them, we move to the
rotating coordinate frame η 0 � η cos�αξ� � ζ sin�αξ�, ζ 0 �
ζ cos�αξ� − η sin�αξ� in which the waveguide array does not
change and assume that the modes have nontrivial phase profiles
q � �u�η 0; ζ 0� � iv�η 0; ζ 0�� exp�ibξ�. Here u, v are the real and
imaginary parts of the field amplitude, and b is the propagation
constant. In the rotating coordinate system, the equations for the
field components take the following form (for simplicity, we fur-
ther omit primes in the coordinates):

α�η∂∕∂ζ − ζ∂∕∂η�v � �1∕2�Δ⊥u − σu�u2 � v2� �Ru � bu;

α�ζ∂∕∂η − η∂∕∂ζ�u� �1∕2�Δ⊥v − σv�u2 � v2� �Rv � bv;

(2)

where Δ⊥ � ∂2∕∂η2 � ∂2∕∂ζ2 is the transverse Laplacian ac-
counting for diffraction. In the frames of the effective particle
description, the first advective terms in Eq. (2) account for
centrifugal force acting on the beam (the analogy between
Eq. (1) written in the rotating coordinate frame and the two-
dimensional nonrelativistic Schrödinger equation for a charged
particle moving in the periodic potential and subjected to time-
independent electric and magnetic fields is established in [35]);
the third and fourth terms stand for self-action and refraction in
an optically inhomogeneous medium. We characterize the
solutions of Eq. (2) with their energy flow U � RR jqj2dηdζ.

We first consider the linear modes of Eq. (2) at σ � 0 that
can be obtained with a standard eigenvalue solver. At α � 0,
i.e., when the waveguide array does not rotate, all linear modes
are delocalized. Because our array is finite and contains 19 × 19
waveguides, the transverse extent of all modes at α � 0 is
determined by the size of the entire array. The central result
of this Letter is that for α ≠ 0 two types of localized linear
modes emerge. One of them is located in the array corner.

More precisely, due to the equivalence of all four corners of
the array, they appear in each corner of the structure. An ex-
ample of such a mode is shown in Fig. 1(a). The physical reason
behind the existence of such modes is an interplay of the cen-
trifugal light energy transfer and the total internal reflection at
the array border. Indeed, the former energy transfer acts so that
all off-center excitations are expelled toward the edge of the
array. At the same time, the light tends to be reflected back
into the depth of the array when it reaches the array surface,
since the mean refractive index in the array is higher than that
in the surrounding free space. The mode depicted in Fig. 1(a)
has the highest propagation constant and is most confined, but
other less confined modes may appear in the corner, too. They
have different phase distributions.

In addition to the cornermode, localized linear states emerge
in the center of the waveguide array. Examples of such states are
shown in Figs. 1(d) and 1(e). They appear to be due to the
averaging of the rotating square potential pointed out in
[32] and leading to the formation of the minimum of the ef-
fective potential at the rotation axis. This effective potential
becomes deeper with the increase of the rotation frequency.
As a result, the linear central modes corresponding to a higher
rotation frequency [Fig. 1(e), α � 0.26] are more localized
than the modes at a low frequency [Fig. 1(d), α � 0.08].

The propagation constant of the most localized linear corner
mode (termed here blin) coincides with the top of the first band
at α � 0 and monotonically increases with the increase of the
rotation frequency [Fig. 2(a)]. The growth of the rotation
frequency is accompanied by the monotonic localization of
the corner mode. This might be interpreted as a consequence
of the increased centrifugal force pushing light toward the
surface. The width of the mode W � χ−1 can be characterized
using the integral form-factor χ2�U −2

RR jqj4dηdζ which pro-
vides an accurate estimate, even for complex field distributions
such as those depicted in Fig. 1. Figure 2(b) shows that for
sufficiently large α values the corner mode shrinks nearly to
a single waveguide excitation. When the rotation frequency
exceeds a critical value αcr ≈ 0.084, marked with a dashed
line in Fig. 2(a), no localized modes residing in the array corners
can be found, since the potential cannot compensate for the
centrifugal light energy transfer at such frequencies. Instead
of corner modes at α > αcr, the eigenvalue solver returns
modes located near the boundary of the integration window.
We found that αcr monotonically grows with the increase of
the array depth p (thus, at p � 11, one gets αcr ≈ 0.11) and
decreases with the increase of its period d (since a larger d
leads to an increase of the array size and growth of centrifugal
forces).

The central modes may withstand much larger rotation
frequencies than corner ones [see Fig. 2(c) showing the trans-
formation of the width of such modes with α]. However, at
sufficiently large α values exceeding 0.5, the central modes be-
come leaky and acquire a small-amplitude background. The
transition between the localized and leaky central modes seems
to be continuous and it is hard to introduce a well-defined
critical rotation frequency for them. Nevertheless, the direct
propagation shows that the radiation is negligible for a central
mode with α < 0.3.

Next we address the modes supported by a truncated rotat-
ing array at σ ≠ 0. In our case, nonlinear modes bifurcate from
the linear ones upon an increase of the peak amplitude (i.e., the
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linear limit corresponds to jqj, U → 0). They can be encoun-
tered both in the focusing and defocusing media. Typical U �b�
dependencies are shown in Fig. 3(a) for different rotation
frequencies, including α � 0 case. In the non-rotating array,
the localized corner modes exist only above a certain energy
flow threshold (curve 1). The manifestation of this threshold

is still seen at small rotation frequencies, where the dependence
U �b� may be nonmonotonic (curve 2). At a sufficiently large
α > 0.034, the energy flow of the corner mode monotonically
decreases with b in a defocusing medium and increases in a
focusing medium (curve 3). Increasing b in the focusing
medium results in further mode contraction toward the corner
channel [compare Fig. 1(b) showing a nonlinear corner mode
with its linear counterpart from Fig. 1(a)]. Decreasing b in a
defocusing medium leads to a notable expansion of the corner
mode [Fig. 1(c)]. In a focusing medium for a fixed propagation
constant b, the energy flow of the soliton decreases with an
increase of the rotation frequency [Fig. 3(b)] and, at a certain
α � αcr value, the energy flow vanishes, so that soliton trans-
forms into a linear mode. The corresponding critical rotation
frequency can be defined from Fig. 2(a). Since solitons bifur-
cate from linear guided modes, their widths remain finite in the
bifurcation point and are determined by the widths of the cor-
responding linear modes [Fig. 2(b)]. A stability analysis per-
formed by direct soliton propagation in the presence of
random perturbations shows that at intermediate rotation
frequencies α < αcr nonlinear corner modes are stable.
Instabilities are possible at α → 0 only on the U �b� branches
with negative slopes. Solitons can also bifurcate from linear
modes located in the center of the array. Their properties
are analogous to those of the corner modes.

An example of stationary rotation of the exact linear corner
mode obtained from Eq. (2) is depicted in Fig. 4(a), where light
intensity distributions at different propagation distances are
superimposed for clear visualization of the trajectory. Such a
mode indeed rotates steadily without radiation as long as
α < αcr. Since the corner supports several linear modes with
different phase and amplitude distributions, a single-site input
qjξ�0 � a exp�−�η� 9d �2∕w2 − �ζ � 9d �2∕w2� with a small

Fig. 2. (a) Propagation constant of linear corner mode existing due
to rotation and (b) its width versus α. The dashed lines indicate the
critical rotation frequency. (c) Width of linear central mode versus α.

Fig. 1. (a)–(c) Linear and nonlinear modes residing in the corner of the rotating array at α � 0.046. (a) Linear mode with b � 3.33, (b) a soliton
in focusing medium with b � 3.68, and (c) a soliton in defocusing medium with b � 3.24. Linear modes residing in the center of the rotating array
at (d) b � 2.36, α � 0.08 and (e) b � 2.47, α � 0.26. The small red spots in all panels indicate array channels.
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amplitude a ≪ 1 excites several such modes with correspond-
ing weight coefficients; hence, a subsequent evolution is the
result of intermodal beatings [see Fig. 4(b), a � 0.01].
Upon such beatings, the light remains close to the corner that
was excited and does not penetrate into an array center. When
focusing nonlinearity is considered, and the amplitude a is
comparable with 1, the rotating corner soliton is excited [see
Fig. 4(c), a � 1]. Notice that almost no radiation penetrates
into the depth of the array.
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Fig. 3. (a) Energy flow versus propagation constant for corner sol-
itons in the arrays with α � 0 (curve 1), α � 0.032 (curve 2), and
α � 0.046 (curve 3). The solid lines correspond to the focusing non-
linearity; the dashed lines correspond to the defocusing one. The
circles correspond to the corner modes shown in Fig. 1. (b) Energy
flow versus α for different b values in the focusing medium.

Fig. 4. Snapshot images showing (a) the evolution of the exact linear
corner mode in the rotating array, (b) the linear evolution of the local-
ized beam launched into the corner channel, and (c) the excitation
of the corner soliton in the focusing medium with a localized beam
launched into corner channel. In all cases, only one corner is excited,
and α � 0.046. The snapshot images are taken at distances
ξ � f0; 15; 35; 55; 70; 85; 105; 120g in panel (a) and at distances ξ �
f135; 155; 170; 190; 205; 225; 240; 255g in (b) and (c). The white
circle with arrows indicates the rotation direction.
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